skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buck, Clifton S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 17, 2026
  2. The transport and delivery of low‐abundance, bioactive trace elements to the surface ocean by aerosol mineral dust is a major planetary control over marine primary production and hence the global carbon cycle. Variations in the concentration of atmospheric dust have established links to global climate over geologic timescales and to regional biogeographic shifts over seasonal timescales. Constraining atmospheric dust variability is thus of high value to understanding oceanographic systems, especially vast, constitutively low‐nutrient subtropical gyre ecosystems and high‐nutrient/low‐chlorophyll ecosystems where availability of the trace element iron is a dominant ecological control. Here we leverage the MERRA‐2 reanalysis product to examine over four decades of surface‐level atmospheric mineral dust concentrations in a domain of the subtropical North Pacific centered at Ocean Station ALOHA. This study region has been sampled regularly since the mid‐1980s and was the site of the Hawaii Aerosol Time‐Series (HATS) project in 2022–2023. Two unequal semi‐annual periods of elevated dust evident in the long‐term results are described and constrained. We look for evidence of shifts in total and seasonal atmospheric dust abundances or in the timing of the onset of the dominant spring/summer dusty period, finding year‐to‐year variations but little evidence for long‐term trends. We observe significant but complex relationships between the Pacific Decadal Oscillation (PDO) index and both dust and precipitation. The 2022 calendar year was among the dustiest years for the study domain in the preceding two decades and, by contrast, 2023 exhibited a significant early spring lull in dust. 
    more » « less
    Free, publicly-accessible full text available January 16, 2026
  3. Abstract We use a tracer method involving the cosmogenic radioisotope beryllium‐7 (half‐life = 53.3 days) to follow the deposition of aerosols and the fate of snow on the MOSAiC ice floe during winter and spring 2019–2020. When examined alongside data from earlier studies in the Arctic Ocean that covered summer and fall, Be‐7 inventories indicate a summertime peak for aerosol Be‐7 deposition fluxes coinciding with seasonal minima boundary‐level aerosol concentrations, which suggests that deposition fluxes are primarily controlled by precipitation. This conclusion is supported by the linear relationship between Be‐7 fluxes and precipitation rates derived from data from the MOSAiC and SHEBA expeditions. Inventories of Be‐7 within the snow column exhibited evidence of significant redistribution. Be‐7 deficits, relative to the flux, were observed in areas of level sea ice while excess Be‐7 was found associated with deformed ice features such as pressure ridges, leading to the following estimates for the distribution of snow on the ice floe in May 2020: 75–93% of the snow mass is found on deformed sea ice with the remainder on level ice. Furthermore, uncertainties associated with measurements of Be‐7 concentrations within the ocean mixed layer would allow for losses of snow through open leads of up to approximately 20% of the flux. Our snow distribution estimates agree with data from repeat snow depth transect measurements. These results suggest that Be‐7 can be a useful tool in studying snow redistribution. 
    more » « less
  4. Abstract Atmospheric deposition of aerosols transported from the continents is an important source of nutrient and pollutant trace elements (TEs) to the surface ocean. During the U.S. GEOTRACES GP15 Pacific Meridional Transect between Alaska and Tahiti (September–November 2018), aerosol samples were collected over the North Pacific and equatorial Pacific and analyzed for a suite of TEs, including Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb. Sampling coincided with the annual minimum in dust transport from Asia, providing an opportunity to quantify aerosol TE concentrations and deposition during the low dust season. Nevertheless, peak concentrations of “crustal” TEs measured at ∼40–50°N (∼145 pmol/m3Fe) were associated with transport from northern Asia, with lower concentrations (36 ± 14 pmol/m3Fe) over the equatorial Pacific. Relative to crustal abundances, equatorial Pacific aerosols typically had higher TE enrichment factors than North Pacific aerosols. In contrast, aerosol V was more enriched over the North Pacific, presumably due to greater supply to this region from oil combustion products. Bulk deposition velocity (Vbulk) was calculated along the transect using the surface ocean decay inventory of the naturally occurring radionuclide,7Be, and aerosol7Be activity. Deposition velocities were significantly higher (4,570 ± 1,146 m/d) within the Intertropical Convergence Zone than elsewhere (1,764 ± 261 m/d) due to aerosol scavenging by intense rainfall. Daily deposition fluxes to the central Pacific during the low dust season were calculated using Vbulkand aerosol TE concentration data, with Fe fluxes ranging from 19 to 258 nmol/m2/d. 
    more » « less
  5. Abstract Despite the Pacific being the location of the earliest seawater Cd studies, the processes which control Cd distributions in this region remain incompletely understood, largely due to the sparsity of data. Here, we present dissolved Cd and δ114Cd data from the US GEOTRACES GP15 meridional transect along 152°W from the Alaskan margin to the equatorial Pacific. Our examination of this region's surface ocean Cd isotope systematics is consistent with previous observations, showing a stark disparity between northern Cd‐rich high‐nutrient low‐chlorophyll waters and Cd‐depleted waters of the subtropical and equatorial Pacific. Away from the margin, an open system model ably describes data in Cd‐depleted surface waters, but atmospheric inputs of isotopically light Cd likely play an important role in setting surface Cd isotope ratios (δ114Cd) at the lowest Cd concentrations. Below the surface, Southern Ocean processes and water mass mixing are the dominant control on Pacific Cd and δ114Cd distributions. Cd‐depleted Antarctic Intermediate Water has a far‐reaching effect on North Pacific intermediate waters as far as 47°N, contrasting with northern‐sourced Cd signatures in North Pacific Intermediate Water. Finally, we show that the previously identified negative Cd* signal at depth in the North Pacific is associated with the PO4maximum and is thus a consequence of an integrated regeneration signal of Cd and PO4at a slightly lower Cd:P ratio than the deep ocean ratio (0.35 mmol mol−1), rather than being related to in situ removal processes in low‐oxygen waters. 
    more » « less
  6. Abstract Deposition of aerosols to the surface ocean is an important factor affecting primary production in the surface ocean. However, the sources and fluxes of aerosols and associated trace elements remain poorly defined. Aerosol210Pb,210Po, and7Be data were collected on US GEOTRACES cruise GP15 (Pacific Meridional Transect, 152°W; 2018).210Pb fluxes are low close to the Alaskan margin, increase to a maximum at ∼43°N, then decrease to lower values. There is good agreement between210Pb fluxes and long‐term land‐based fluxes during the SEAREX program (1970–1980s), as well as between GP15 and GP16 (East Pacific Zonal Transect, 12°S; 2013) at adjacent stations. A normalized fractionf(7Be,210Pb) is used to discern aerosols with upper (highf) versus lower (lowf) troposphere sources. Alaskan/North Pacific aerosols show significant continental influence while equatorial/South Pacific aerosols are supplied to the marine boundary layer from the upper troposphere. Lithogenic trace elements Al and Ti show inverse correlations withf(7Be,210Pb), supporting a continental boundary layer provenance while anthropogenic Pb shows no clear relationship withf(7Be,210Pb). All but four samples have210Po/210Pb activity ratios <0.2 suggesting short aerosol residence time. Among the four samples (210Po/210Pb = 0.42–0.88), two suggest an upper troposphere source and longer aerosol residence time while the remaining two cannot be explained by long aerosol residence time nor a significant component of dust. We hypothesize that enrichments of210Po in them are linked to Po enrichments in the sea surface microlayer, possibly through Po speciation as a dissolved organic or dimethyl polonide species. 
    more » « less